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KINEMATIC STAB I L l l Y  OF ROLLER PAIRS IN FREE-ROLLING CONTACT 

by Michael  Savage* and  Stuart  H. Loewenthal 

Lewis Research Center and  

U. S. A r m y  A i r  Mobility R&D Laboratory 


SUMMARY 


A set of generalized stability equations is developed for roller pairs in free-
rolling contact. A symmetric, dual-contact model was used. Four possible external 
contact profiles that possess continuous contacting surfaces were studied. These con­
sisted of convex-convex, convex-straight, convex-concave, and straight-straight ge­
ometries. It was  found that kinematic stability is insured if the larger radius of trans­
verse curvature, in absolute value, and the smaller rolling radius coexist on the roller 
that has the apex of its conical surface outboard of its main body. If roller instability 
does develop, in the form of roller skewing, relative axial motion will occur in the di­
rection of the roller end with the smaller rolling radius. 

The stability criteria developed are considered to be useful for assessing axial re­
straint requirements for a variety of roller mechanisms and in the selection of roller 
contact geometry for traction drive devices. 

INTRODUC TION 

It is not well  recognized that elastic cylindrical bodies that have been placed in rol­
ling contact wil l  produce axial motions no matter how carefully these elements have been 
manufactured or  alined. Consideration of component axial motion and the control of at­
tendant thrust forces has had a strong influence on the design of several mechanical de­
vices. The most notable examples a re  the design of railroad wheel-rail sets for lateral 
stability (refs. 1 to 3), the cambering of flat belt pulleys for self-centering action 
(ref. 4), the axial feed action of centerless grinding machines (ref. 5), the thrust cap­
ability of cylindrical roller bearings (ref. 6) and the axial stability of rollers in traction 
drives devices (ref. 7). 

*Assistant Professor of Mechanical Engineering, Case Western Reserve University, 
Cleveland, Ohio; Summer Faculty Fellow at the Lewis Research Center in 1974. 



The railroad wheel-rail contact typifies the contact that is common to many roller 
mechanisms in that the wheel and rail represent a pair of roller elements with the rail 
being a roller of infinite radius. The one major difference in the analysis and design of 
these contacts is that, in the case of the railroad wheel contact, the wheel sets must 
carry a significant mass (the railroad car) and must accelerate it in the axial direction 
as the train rounds a curve. Thus, in this case, the wheel-rail contact must be capable 
of reacting a large axial force. For this reason the wheels have a significant flange 
which is used to provide the required axial force from its contact with the rail. Since it 
is desirable that the wheels run true on the rails with little flange contact when the train 
is running straight, axial stability considerations become an important factor in their 
design. 

The primary cause of axial motion of the wheel set is skewing. The flanges, which 
provide a kinetic support for the wheel set, are always on the inside of the wheels. This 
produces a wheel cone with its apex outside the wheel set. The effect of these cones is 
to provide a kinematic stabilization of the wheel set as it runs on the rails. Were  the 
cones reversed, the wheel sets would oscillate wildly in an axial mode as the train moves 
down the track (ref. 1). 

Two basic causes of roller axial motion a re  identified in this study. These are  
skewing and externally applied axial thrust. Both causes can be converted into correct­
ing mechanisms that will  enable the rollers to roll true (i.e . ,  in their plane of contact 
without axial motion). The first correcting mechanism is kinematic; the second is ki­
netic. Although a kinetic o r  force correction, in the form of a roller flange o r  bumper, 
is sometimes required to insure that gross axial motion cannot occur, the kinematic 
correction is unquestionably more desirable. The kinematic correction, which results 
in self-centering action, can be implemented without seriously affecting either the mech­
anical efficiency o r  durability of the contact. Axial motion that is not corrected kine­
matically will create significantly large thrust forces that have to be withheld by flanges 
or  thrust bearings. The investigation conducted by Virabov (ref. 7) shows that even a 
minute misalinement between the contact and spin axes of interacting cylindrical rollers 
caused by unavoidable e r rors  in the manufacture o r  alinement of the rolling bodies will 
result in significant axial forces being generated. Tests results for a pair of 50­
millimeter (2-in. ) diameter steel rollers running dry (traction coefficient = 0.32) in­
dicated that a roller skew angle of only 0.27' will  produce a thrust force that is 24 per­
cent of the normal load acting on the body. Obviously, roller flanges o r  thrust bearings 
that a re  required to operate continuously under such conditions would be unattractive 
from a system life and performance standpoint. 

In a private communication to the authors, Dr.  Veljko Milenkovic extended his work 
regarding the stability of a railroad wheel-rail contact (ref. 1)to the more generalized 
case of roller pairs in free-rolling contact. In this communication, he advocated the 
technique of using self-corrective geometries to promote roller stability. Milenkovic's 
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work gave incentive to the present investigation. 
The objective of the study reported herein was to establish a specific stability cri­

terion for external roller pairs in free-rolling contact. Roller contact profiles that 
comply with this criterion will promote a self-correcting action of the roller pair that 
has been disturbed from parallelism. 
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SYMBOLS 

center distance of transverse curvature (eq. (15)), cm (in.) 

radial distance from spin axis of cylinder to the center of transverse curv­
ature, cm (in.) 

rolling radius, cm (in.) 

nominal rolling radius of cylinder in plane 1at z = 0 (figs. 5 and 7), cm (in.) 

tangential velocity, cm/sec (in. /sec) 

velocity of cylinder a's center relative to pitch line, cm/sec (in./sec) 

central tangential pitch line velocity, cm/sec (in./sec) 

Cartesian coordinate system 

inclination of contact normal from radial direction (figs. 4 to 6 and 7), deg 

slip velocity, cm/sec (in. /sec) 

radius of transverse curvature, cm (in. ) 

angular velocity of cylinder, rad/sec 

Subscripts: 

a cylinder a 

b cylinder b 

1 plane 1 

2 plane 2 

Superscripts: 

a axial direction 

t tagent ia l  direction 
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KINEMATIC MODEL 

Axial Motion 

The contact of interest is that of two cylindrical elements rolling on each other. 
This can be modeled in one plane as a pair of rolling circles o r  in a continuous series of 
parallel planes as a sequence of rolling circles rigidly attached to each other along the 
respective axes of the two cylinders. A kinematic analysis of the effects of misaline­
ment require that at least two planes of contact be considered, such as the two planar 
model shown in figure 1. 

In the model slight variations in rolling radii from the nominal radii ra and rb 
are considered. However, each cylinder is a rigid body, thus the planar rolling circles 
at each end of the cylinder must move as a single unit. In plane 1the pitch point veloc­
ity of cylinder b is given by 

while in plane 2, it is 

'2b = r2bWb 

For cylinder a these two velocities would be 

'la = rlaua 

and 

For no slip at plane 2 

'2a = '2b 

r2aua = r2bWb 

o r  

'2b 
a =-93 

r ~ a  

(3) 

(4) 
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In plane 1from equations (3) and (7), 

- r2b 
"b 

'la r2a 

For no slippage also at plane 1 

vlb = 

and, from equations (l),(8),  and (9), 

lb - r2b wb 
r2 a 

or 

As shown in figure 2(a), if rlb/rla is greater than r2b/r2a and pwe  rolling exists at 

the contact in plane 2, then slippage will occur at the contact in plane 1. For the geom­
etry shown, where r2a = r2b and rla < rlb, a slip velocity wil l  be developed in the 
positive x direction between the contacting points on the roller surfaces. Thus, 

AUl = Vlb - Vla 

will be a positive slip velocity of roller b under roller a. Friction wil l  convert this 
relative velocity into a tractive force that tends to skew cylinder a on cylinder b as 
shown in figure 2(b). This skewing wil l  generate a component of the relative velocity of 
cylinder a's center with respect to the pitch point in the axial direction from plane 2 to 
plane 1. This velocity component is in the direction towards the smaller rolling radius 
circle. The tangential component of this relative velocity Vt c /P 

is subtracted from the 
pitch line velocity V for the net circumferential motion. The axial component of this 
relative velocity Va c /P 

remains unopposed. This produces a net axial motion of cylinder 
a with respect to cylinder b as indicated in figure 2(b) by the relative velocity vectors. 
Unopposed, this axial motion o r  v'walking", which is a consequence of roller skewing, 
will continue until either a mechanical restraint is encountered or  the rollers have be­
come disengaged. 
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Stability Criterion 

Kinematic stability is achieved when a roller pair, which is momentarily disturbed 
from its equilibrium position by an external force, is capable of returning to a neutral 
position only because of corrective geometry changes. If the geometry of the contact 
between the two cylinders is such that the inequality that initiates this axial motion is 
changed to the equality of equation (11)by the axial motion, then the contacts will  be 
kinematically stable. Therefore, to achieve kinematic stability, the object is to select 
the roller geometry that tends to satisfy equation (11) after the roller has been disturbed. 

The model chosen to evaluate the roller's tendency to return to equilibirium assumes 
the contacting surfaces at the roller ends to be both continuous and symmetric. Since 
these surfaces are  rigidly connected, axial motion of one roller relative to the other wi l i  
cause equal but opposite changes of contacting radius ratio at the roller ends. There­
fore, the total stability question of the roller pair can be studied by considering the con­
tact geometry changes at one end only. In plane 1 a stabilizing condition exists when 

where z denotes a shift of cylinder a to the right as indicated in figure 2. Since the 
contact geometry is symmetric, then in plane 2 

The sign of the inequality appearing in equation (13) is a consequence of the roliers 
tendency to move axially in the direction towards the end that possesses the smaller rol­
ling radius. For the example selected in figure 2(a), as roller a moves in the positive 
z direction relative to roller b, the radius ratio rlb/rla is required to decrease in 
value in order to restore equilibrium in accordance with equation (11). Considering the 
antisymmetric behavior of the contact occurring in plane 2, just the opposite change 
would be required; that is, r2b/r2a is required to increase in value to restore equality 
between the radius ratios at each end. These stability requirements are reflected by 
equations (13)and (14)as'shown. 

As previously mentioned, for roller bodies with symmetric ends, it is sufficient to 
consider the stability characteristics of the contacting geometry at only one end. In the 
analysis that follows, the contact occurring at the plane 1 end or ihe end on the right 
side of the roller wil l  be examined. 

The compliance of an axially disturbed roller pair to the criterion described in eq­
uation (13)will  cause the rollers to eventually approach a condition of pure rolling where 
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equation (11)is satisfied. If the axes are  still skewed at this point, further motion will 
cause r2b/r2ato become larger than rlb/rla, which will  tend to skew the axes in the 
opposite direction. This correction would tend to return the cylinders to their stable 
equilibrium point of pure rolling where these ratios are equal. In practice, a damped 
oscillation would most likely result. A roller pair exhibiting this behavior would be 
considered to have both axial a s  well as angular kinematic stability. 

Basic Assumptions 

The following analysis is based on several assumptions: 
(1)The axes of the rolling cylinders remain sufficiently parallel to enable the con­

tact to be treated as  though it occurred in one plane. Thus, skewing motion and its re­
sultant axial motion are  both small. Neither motion significantly affects the transverse 
rolling geometry model of this analysis. 

(2) The skewing of one roller on another is primarily a second-order rolling phe­
nomenon that can be modeled by considering two planes of rolling contact. The differ­
ential action between these two planes is treated a s  the basic cause of roller skewing. 

(3) The roller ends are symmetric so that antisymmetric behavior occurs in the 
two contact planes as the rollers shift axially. 

The contacting surfaces can now be classified by their transverse curvatures as long 
as single-point contact is maintained between the two rollers at each end. The combin­
ations that assure this are (as shown in fig. 3) (I) convex-convex, (11)convex-straight, 
(III)convex-concave, and (N)straight-straight. In the analysis to follow, the contact 
occurring at the right end of the rollers will  be the plane 1contact. 

KINEMATIC STABILITY 

In the case of two convex surfaces, the axial motion will  be such as to maintain the 
distance between the centers of transverse curvature, considering the geometric effect 
of skewing to be negligible. In the analysis to follow, p is the transverse radius of 
curvature, r is the rolling radius, and R is the radial distance from the roller's spin 
axis to the center of transverse curvature. If p cos a! is less than r, R is positive. 
The angle CY is the inclination of the contact normal from the radial direction. It is 
also the angle that describes the contact slope relative to the axial direction. In each 
of the cases examined, roller b will be the roller that has the apex of its conical sur­
faces outboard of its main body for positive a in plane 1. 

Figure 4 shows two cylinders in contact, both of which have transverse convex sur­
faces. The a cylinder is shown in two adjacent positions to clarify the effect of the ax­
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ial motion dz on the contact geometry. In this case the effect is to increase a! by the 
angle da. I� C is defined as the center distance of transverse curvature, then 

C = P a + &  

and the slope angle a! is related to z by 

and 

The contact radii are given by 

and 

Thus 

For stability 

zsins!=-
C 

dc2 - 2 cos a! = " 
L 

rla = Ra + pa cos a! 

rlb = Rb + pb cos a! 

- Rb 4 'Os a! 

ria R, + pa COS a! 

After some differentiation and the appropriate algebra, 

The sign of this expression is controlled by (rlbpa - rlab) tan a!, which will  in­
dicate kinematic stability according to equation (13) when it is negative. For a positive 
a! (asdrawn in fig. 4) stability occurs when 
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or 

For positive a, the b roller will have the apex of i ts  conical contact surface out­
board of the roller ends as shown in figure 4. Since the transverse curvature of roller 
a is shown to be significantly smaller than that of roller b, kinematic stability can be , 

expected even though the rolling radii of both bodies are nearly the same. However, 
if the radii of transverse curvature happen to be nearly equal, the rolling radius of the 
b roller must be smaller than that of the mating roller a for definite kinematic stabil­
ity. For the double convex contact, it can be stated that the kinematic stability is de­
fined by the sign of equation (21). 

Figure 5 shows two rollers in contact: one has convex transverse curvature, and 
the other has a straight transverse profile. In this case C is infinite, so a slight mod­
ification is required in the previous analysis. Equation (19) still holds but the rolling 
radius of the straight coned roller becomes 

* rib = rlb - (z - pa sin a!) tan a! 

* 
where rlb is the nominal rolling radius of that roller at the plane in which z has a 
zero value. The ratio of rolling radii in plane 1becomes 

* 
'lb - 'lb - (z - pa sin a)tan CY 

~- - ~  ­

r la Ra + pacas a, 

Note that in this case, the angle a,, the inclination of the contact, is constant with 
changes in z since the shape of the straight cone does not change along i ts  surface. 
For stability in accordance with equation (13), differentiation of equation (25) yields 

where stability is insured for this set of contacts as long as the angle a! is positive as 
drawn. Thus, the cone shaped roller must be the one with the apex outboard of its main 
body. In this case the radii of transverse curvature dictate stability, since one is in­
finite and the other is finite. This can be appreciated by setting 4 equal to infinity in 
equation (23). 

9 




The third case of roller combinations is shown in figure 6. Here roller a has 
cqvex  transverse curvature along its contact surfaces, and roller b has concave 
transverse curvature. This condition makes negative and greater than pa in ab­
solute value, so C from equation (15) is also negative. This also makes z negative 
for  the geometry as shown but equation (21) is still applicable with the use of a negative 
radius of transverse curvature 43 for  the concave surface. The sign is again de­

2termined by (rlbpa - rla&) (tan a)/Crla where C is no longer positive definite. 
Since C is negative and a is positive for the geometry as drawn, stability is 

defined by 

or 

Since pa is positive and 40 is negative by definition of the transverse curvature, the 
drawn geometry is stable for positive cy. A reversed cone slope, that is, negative a, 
would make this contact unstable. The railroad wheel-rail contact is in agreement with 
this criterion. 

The last contact pair to be considered is that of two straight sided cylinders. Fig­
ure 7 illustrates this* condition. As in the second case, assign the nominal rolling* 
radii the symbols rla and rlb. The angle a is the cone half angle o r  the inclination 
of the cone surface to the axes and z denotes the axial travel of cylinder a relative to 
b to the right. Unlike the previous cases no kinematically defined point of rolling con­
tact exists to identify plane 1. Assume that this plane is located at the midpoint of the* * 
contact of the spool model. Thus rla and rlb become the radii at the contact center 
and 

* z
rla = rla - -tan a 
2 

* z
rlb = rlb - -tan a 
2 

Note that both rolling radii decrease with relative axial travel z. Thus, the radius ratio 
becomes 

*	 z 
- 2 t a n a  
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and 

(rib - r )-tan a 
la 2 

2r la 

which is quite similar to equation (21). As before, the sign is controlled by 
(rib - ria) tan a! since r2 is always positive.la

As drawn, the angle a is positive and stability is defined by 

Thus, a stable contact of straight sided cylinders would have the larger radius cylinder 
taper inward. Equal radii cylinders would be neutrally stable and thus have no re­
storing properties. Neutral stability exists for straight cylinders with no taper regard­
less of the value of the rolling radii. This is a direct consequence of tan a = 0, so that 

for the taperless cylinders. 

DISCUSSION 

The analysis presented indicates that three basic parameters affect the kinematic 
stability of free-rolling conical roller pairs : 

(1)half contact cone slope a! 

(2) rolling radius rb/ra 
(3) transverse curvature ratio &/pa 

The implications of the stability criteria for the cases examined are summarized in 
table I for positive and negative a. For rollers of equal rolling radii, the larger rad­
ius of transverse curvature must be on the roller whose half cones have apexes outside 
the roller as shown on roller b in each analysis. This is a factor in case I, and the 
dominant factor in cases II and III. It does not come into play in case IV because both 
rollers have the same radius of transverse curvature - infinity. A second factor is that 
the smaller of the two rolling radii must be on the half cone with an external apex. This 
interacts with the first consideration in case I, is not a factor in cases 11and III, and is 
the dominant stability factor in case IV. In all cases, if the larger radius of transverse 
curvature, in absolute value, and smaller rolling radius both exist on the roller that has 
the apex of its conical surface outboard of i ts  main body, the stability of the contact is 
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insured. This is the situation fo r  the railroad wheel-rail contact. 
Secondly, for all cases an equality in eqtuation (13) indicates a neutrally stable 

geometry that does not by itself cause skewing or axial motion. However, as in the case 
of straight rollers, since no corrective action is present, instabilities may occur. 

Finally, it can be stated that the stability criteria presented is only the start  in 
indicating how roller pairs should be modified to inhibit skewing o r  axial motion. The 
contact geometry of internal and external rolling cylinders and those clustered together 
should also be studied. A quantitative relation can be sought between the corrective 
action of these geometries and external thrust forces o r  torques applied to the rollers. 
Extreme deviations from a straight cylindrical contact geometry in consideration of 
stability will  most likely have an adverse effect on roller contact performance and dur­
ability due to an increase in the contact's sliding velocity. Thus, the selection of an 
optimum roller profile for a given application is usually a balanced compromise among 
several factors. The merit function should include minimum size, maximum efficiency, 
maximum durability, and maximum stability. 

SUMMARYOF RESULTS 

A set of generalized stability equations for conically shaped roller pairs in free-
rolling contact have been developed. A symmetric, dual-contact model was used. Four 
possible contact profiles that possess continuous contacting surfaces were studied. The 
profiles examined were convex-convex, convex-straight, convex-concave, and straight-
straight. The following results were obtained: 

1. Axial and angular kinematic stability of a roller pair can be insured if the larger 
radius of transverse curvature, in absolute value, and the smaller rolling radius both 
exist on the roller that has the apex of its conical surface outboard of its main-body. 
The stability of roller pairs  that do not conform to this geometric relationship must be 
assessed on a case by case basis in accordance with their transverse profiles and the 
stability criteria developed herein. 

2. A result of roller kinematic instability is roller skewing. Skewing precipitates 
relative axial motion in the direction towards the roller end with the smaller rolling ra­
dius. The roller stability criteria presented can be used in assessing the axial re­
straint requirements for a variety of roller mechanisms and in particular, the selection 
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of roller contact geometry for traction drive devices where roller spatial stability is 
of major design importance. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, October 20, 1975 
975-05. 
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TABLE I. - SUMMARY OF GEOMETRIC RELATIONSHIPS 

FOR THE KINEMATIC STABILITY OF FREE-ROLLING, 

DUAL-CONTACT CONICAL ROLLERS 

Case 

I 


11 


111 

1V 

Contact geometry Stability cri teria 

apositive cy Negative a 

Convex-convex 

Convex-straight 
(43 = a) 

Convex -concave 
( 'Pb l  >Pa '  

Straight-straight 

'b ,, 43- ..­
ra 	 Pa 
Stable 

Stable 

r .-. rba 

-> - pb'b 

ra Pa 
Unstable 

Unstable 

r < rb a 

aPositive cy when roller 
main body. Negative a 
cone apex. 

Plane 2 

b has cone apex outboard of 
when roller b has inboard 

A i r c l e  al 

'-'Ib 

FiOllr@1. - Two-plane rolling model. 
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t 

(a) Differential slip velocity. 

t "b t x  

- 2  

0)Skewing arid axial velocity generation. 

Figure 2 - Roller kinematic instability. 

(a) I. Convex-convex. 0)11. Convex-straight. 

(c) 111. Convex-concave. (d) IV. Straight-straight. 

Figure 3. - Roller contact geometries. 
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Displacedt '  oosition,7 

Figure 5. - Convex-straight contact geometry. 
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I 

DisplacedIposition 

I 

. J  

-a-

U 
Figure 6. - Convex-concave contact geometry. 

a 

plane 

Figure 7. - Straight-straight contact geometry. 
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published in a foreign language cpnsidered 
to merit NASA distribution in Engi’ish: 

PUBLICAT1oNS: Information 
derived from or of value to NASA activities. 
Publications include final reports of major 
projects, monographs, data compilations, 
handbooks, sourcebooks, and special 
bibliographies. 

TECHNOLOGY UTILIZATION I 

PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other-non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and 
Technology Surveys. 
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